Search results for "Proton-Motive Force"

showing 7 items of 7 documents

Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.

2015

International audience; Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies prin…

Aquatic Organismschemistry.chemical_compoundAdenosine TriphosphateSettore BIO/04 - Fisiologia VegetaleCYCLIC ELECTRON FLOWPlastidsPhotosynthesisPHAEODACTYLUM-TRICORNUTUMPlant Proteinschemistry.chemical_classificationMultidisciplinarymicroalgaeRespirationCarbon fixationEnergetic interactionsProton-Motive ForceMitochondriametabolic mutantPhenotypeATP/NADPH ratioOXYGEN PHOTOREDUCTIONCarbon dioxideOxidoreductasesOxidation-ReductionOceanOceans and SeasElectron flowMarine eukaryotesBiologyPhotosynthesisCHLAMYDOMONAS-REINHARDTIICarbon cycleCarbon CycleMitochondrial ProteinsEnergetic exchangesBotanyOrganic matterEcosystem[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPlastidEcosystemDiatomsChemiosmosisfungiECSCarbon Dioxidechemistry13. Climate actionNADP
researchProduct

Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.

2002

International audience; Reducing agents are potential inhibitors of the microbial growth. We have shown recently that dithiothreitol (DTT), NaBH(4) and H(2) can modify the proton motive force of resting cells of Escherichia coli by increasing the membrane protons permeability [Eur. J. Biochem. 262 (1999) 595]. In the present work, the effect of reducing agents on the resting cells of Lactococcus lactis ssp. cremoris, a species widely employed in dairy processes was investigated. DTT did not affect the acidification nor the DeltapH, in contrast to the effect previously reported on E. coli. The DeltaPsi was slightly increased (30 mV) at low pH (pH 4) in the presence of 31 mM DTT or 2.6 mM NaB…

MESH : Cell LineMESH: Hydrogen-Ion ConcentrationMESH : DithioniteBorohydridesMESH : DithiothreitolBacterial growthmedicine.disease_causeMESH: Proton-Motive ForceDithiothreitolSodium dithionitechemistry.chemical_compoundMESH : Proton-Motive ForceElectrochemistry[INFO.INFO-BT]Computer Science [cs]/Biotechnology0303 health sciencesMESH : Interphasebiologyfood and beveragesProton-Motive ForceGeneral MedicineHydrogen-Ion ConcentrationMESH: BorohydridesLactococcus lactisMembraneBiochemistryReducing AgentsMESH : Sensitivity and SpecificityMESH : Reducing Agents[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyReducing agentMESH: Reducing AgentsBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologySensitivity and SpecificityCell LineMESH: Interphase03 medical and health sciencesSpecies SpecificityMESH : Hydrogen-Ion ConcentrationMESH: DithionitemedicineMESH : Species SpecificityMESH: Species SpecificityLactic AcidPhysical and Theoretical ChemistryEscherichia coli[SDV.BC] Life Sciences [q-bio]/Cellular BiologyInterphase030304 developmental biology[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology030306 microbiologyChemiosmosisLactococcus lactisDithionitebiology.organism_classificationMESH: Sensitivity and SpecificityMESH: Cell LineDithiothreitol[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH: Lactococcus lactisMESH : BorohydridesMESH : Lactic AcidBiophysicsMESH: Lactic AcidMESH : Lactococcus lactisMESH: Dithiothreitol
researchProduct

The stability and functional properties of proteoliposomes mixed with dextran derivatives bearing hydrophobic anchor groups

1992

Liposomes composed of Escherichia coli phospholipid were coated with polysaccharides bearing hydrophobic palmitoyl anchors. The effect on the stability of liposomes without or with integral membrane proteins was investigated. A high concentration of hydrophobized dextrans protected the liposomes against detergent degradation, decreased the fluidity of the membranes, prevented fusion of the liposomes and enhanced their stability. Proteoliposomes containing beef heart cytochrome-c oxidase and the lactose transport carrier of E. coli were similarly affected by coating with the dextrans. Under these conditions both membrane proteins were still active. Long-term stability of the coated liposomes…

PROTEINMembrane FusionBiochemistryMembrane Potentialschemistry.chemical_compoundFUSIONINTEGRAL MEMBRANE PROTEINBINDINGIntegral membrane proteinLiposomeSymportersEscherichia coli ProteinsVesiclePROTEOLIPOSOMEDextransDEXTRAN DERIVATIVEBIOLOGICAL-MEMBRANESFluoresceinsMembraneCarbohydrate SequenceESCHERICHIA-COLIMonosaccharide Transport ProteinsCations DivalentMembrane FluidityProteolipidsMolecular Sequence DataBiophysicsPhospholipidFluorescence PolarizationLactose transportOXIDASECYTOCHROME-CVESICLESElectron Transport Complex IVHYDROPHOBIC ANCHOR GROUPEscherichia coliAnimalsKINETICSChromatographyMyocardiumMembrane ProteinsMembrane Transport ProteinsBiological membraneCell BiologyPROTON-MOTIVE FORCEMembrane proteinchemistryLiposomesCalciumCattleBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by…

2021

Abstract The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m−3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)pH gradient energyEnvironmental Engineering0208 environmental biotechnologyMixing (process engineering)02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and Law01 natural sciencesIndustrial wastewater treatmentElectricityRiversion-exchange membraneReversed electrodialysisPerformance predictionProcess engineeringelectro-membrane proceWaste Management and Disposal0105 earth and related environmental sciencesPower densitybusiness.industryProton-Motive ForceMembranes Artificialbipolar membrane reverse electrodialysisGeneral Medicinewastewater valorisation020801 environmental engineeringMembraneEnvironmental sciencebusinessEfficient energy useJournal of Environmental Management
researchProduct

Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

2012

Abstract The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na + , cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H + gradients generated by membrane-bound H + -pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na + extrusion from the cytoplasm. We used rice ( Oryza sativa L.) cell lines selected for their different toleranc…

Sodium-Hydrogen ExchangersPhysiologyAntiporterPlant ScienceVacuoleBiologychemistry.chemical_compoundPlant Growth RegulatorsPlant CellsGeneticsAbscisic acidPlant ProteinsCell MembraneSodiumfungiProton-Motive Forcefood and beveragesOryzaWater-Electrolyte BalancePlant cellAntiportersIon homeostasisBiochemistrychemistryCytoplasmBiophysicsHomeostasisAbscisic AcidPlant Physiology and Biochemistry
researchProduct

Thiosulfate Reduction in Salmonella enterica Is Driven by the Proton Motive Force

2012

ABSTRACT Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (Δ E °′ = −328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined …

ThiosulfatesSulfurtransferaseElectron donorNaphtholsBiologyPhotochemistryMicrobiologyGene Expression Regulation Enzymologicchemistry.chemical_compoundElectron transferSulfiteEscherichia coliFormateMolecular BiologyExergonic reactionThiosulfateTerpenesChemiosmosisProton-Motive ForceSalmonella entericaGene Expression Regulation BacterialArticleschemistryBiochemistrySulfurtransferasesThermodynamicsProtonsOxidation-ReductionJournal of Bacteriology
researchProduct

Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positiv…

2006

In Gram-positive bacteria and other prokaryotes containing succinate:menaquinone reductases, it has previously been shown that the succinate oxidase and succinate:menaquinone reductase activities are lost when the transmembrane electrochemical proton potential, Deltap, is abolished by the rupture of the bacteria or by the addition of a protonophore. It has been proposed that the endergonic reduction of menaquinone by succinate is driven by the electrochemical proton potential. Opposite sides of the cytoplasmic membrane were envisaged to be separately involved in the binding of protons upon the reduction of menaquinone and their release upon succinate oxidation, with the two reactions linked…

chemistry.chemical_classificationbiologyProtonophoreChemiosmosisSuccinic AcidProton-Motive ForceBacillusVitamin K 2HemeReductasebiology.organism_classificationBiochemistryRedoxCatalysisSuccinate DehydrogenaseEnzymeBiochemistrychemistryBacterial ProteinsFumaratesOxidoreductaseBacillus licheniformisOxidoreductasesOxidation-ReductionBacteriaBiochemistry
researchProduct